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Executive Summary

Artificial intelligence tools and methods are diffusing within scientific research. Questions
exist over their effects on the productivity, diversification and quality of research, however,
robust evidence of systemic impacts of Al in science are limited.

AlphaFold 2 is an Al tool, developed by Google DeepMind in 2021, that addresses a
longstanding problem in structural biology - protein structure prediction. The performance
of AlphaFold 2 was unanticipated and is recognised for addressing this challenge. The tool
and a database of 200 million predicted protein structures have been released for free.
These characteristics make AlphaFold 2 a valuable case study.

Our analysis studies 5 million academic publications, clinical articles, patents and protein
structures to investigate the impact of AlphaFold 2. We measure the association of
AlphaFold 2 with scientific productivity, novel research and applied outcomes. We assess
direct and indirect impacts of the tool against a baseline of structural biology research, and
other high impact, contemporary developments in four key areas.

Scientific reach: 550,000 publications are linked to AlphaFold 2 directly and indirectly,
involving almost 2 million unique researchers, with the latter measure of reach exceeding
that of other frontier developments. However, AlphaFold 2's influence continues to grow,
while others have plateaued. We also estimate that 218,000 articles incorporate elements
of AlphaFold 2 into their methodology.

Experimental structural biology: Researchers building on AlphaFold 2 demonstrate a

45% - 49% increased rate of experimental protein structure submissions, higher than rates
for those adopting other frontier developments. Influence of the tool is also associated with
consistently more unique protein structures, demonstrating a tendency to increase novelty.
However, structure resolution is lower in these less chartered parts of the protein universe.

Academic productivity and quality: Links to AlphaFold 2 lead to a modest increase in
publication rates for researchers (2.5%) and laboratories (5.1%), similar to other frontier
developments. Citation counts for research papers building on AlphaFold 2 and other
frontier developments exhibit increases between 25% and 30%. Normalising citation
counts by field and year still yields positive associations, with AlphaFold 2 performing
strongly for researchers and laboratories.

Applied research and innovation: There is a generally positive impact associated with
AlphaFold 2 across the areas that we examine, consistent with an emerging technology,
and similar to more established frontier developments. In particular, individual researchers
using AlphaFold 2 have a 9.3% greater likelihood of publishing disease related research.
Papers linked to AlphaFold 2 are twice as likely to be cited in clinical articles, double the
increase of other Al protein prediction developments, but researchers themselves see no
increase. We find that research and researchers building on AlphaFold 2 are between
22.6% and 34.2% more likely to be cited by a patent, similar to other frontier
developments.
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Conclusions

AlphaFold 2 is generally associated with positive impacts across the dimensions
investigated here. The effect sizes are typically on par with, or exceed, other frontier
developments in terms of magnitude, and are more consistent, particularly with respect to
other frontier Al developments. In addition, it is now leveraged over a much larger
population of researchers. This demonstrates that high accuracy, predictive Al tools can
diffuse across science as quickly as high impact research built on more established
approaches.

We also find that AlphaFold 2's impacts on protein structure exploration hold significance
for Alin science. First, the tool's high association with novel protein structures highlights
that Al tools which are used to make predictions to map large knowledge spaces can
encourage greater exploration of previously uncharted areas. This may be as a result of
lowering the associated risks and costs for researchers. Second, its strong positive
association with experimental outputs is indicative of good integration within teams and
existing methods and domain knowledge, challenging the notion that Al and existing
research methods do not mix well. This is reinforced by AlphaFold 2's emerging
association with applied outputs, which suggests that despite its recency, it is capable of
translational impact that spans fundamental and applied research.

Our study suggests that when Al is applied to a bottleneck problem with a clear definition
and existing data, it can unlock progress in science. However, our study is not exhaustive.
We are not able to verify that Al does not lead to ‘streetlight effects’ (systemic
concentration on Al shaped problems), or that it is reaching its full potential. We suggest
nonetheless that the positive effects should be capitalised upon, while science policy and
funding decisions should be used to ensure science uses Al in ways that are
complementary to existing methods of knowledge generation, and that additional tools
and infrastructure for researchers can be developed to bolster impacts.

The work presented in this report is supported by a comprehensive literature review,
methodology and results paper available from the Innovation Growth Lab.
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1. Introduction

Artificial intelligence (Al) has become increasingly integrated into scientific research, driven
by advancements in neural networks and the collection of large scale data. Its rapid
adoption is evident across all fields; research publications referencing Al keywords rose
from 5% in 2020 to over 8% in 2022, with approximately half of this activity now occurring
outside of traditional computer science and mathematics disciplines (Gargiulo et al., 2022;
Duede et al., 2024). This integration has fueled discussions about Al's potential to
accelerate discovery and widen the scope of scientific exploration (Wang et al., 2023;
Agrawal, McHale and Oettl, 2024; Bail, 2024; Messeri and Crockett, 2024; Sumner, 2024).
However, the exact nature of its impact remains an open empirical question, with debates
centering on whether Al will ultimately unlock substantial productivity gains and enrich
science or, conversely, create "streetlight effects" that narrow research focus toward
data-rich, low-hanging fruit (Tranchero et al., 2022).

The present study contributes to this evidence base through an in-depth, quantitative
analysis of AlphaFold 2, a protein structure prediction system released in 2021 (Jumper et
al., 2021). AlphaFold 2 represents a unique, high-impact case study as it addressed a
critical, long-standing bottleneck in structural biology and the wider life sciences. Its
successful development earned its creators the 2024 Nobel Prize in Chemistry (Callaway,
2020; Brzezinski et al., 2024). By comparing AlphaFold 2's impact against other
contemporary frontier developments in structural biology (both Al-intensive and
traditional) we investigate its influence on experimental discovery, research productivity,
and translational outcomes. The following sections summarize the existing literature on
Al's impact in science before introducing additional details about the development and
release of AlphaFold 2.

1.1 The Impact of Al on Science

Productivity

One primary promise of Al in science is its capacity for automated, high-throughput
prediction, leading to increased efficiency across the research process. Early application of
Al in science involved researchers building bespoke models using open-source packages
(Pedregosa et al., 2011; Abadi et al., 2016; Paszke et al., 2019). Today, there are an
increasing number of large pre-trained models (e.g., MetNet for forecasting, GNoME for
material properties) and general-purpose generative Al (ChatGPT, Gemini, Claude) that
assist with tasks ranging from code writing to simulating social science experiments
(Senderby et al., 2020; Andrychowicz et al., 2023; Jakubik et al., 2023; Merchant et al.,
2023; Vaswani et al., 2023).

Emerging evidence suggests a positive association between Al and high-impact research
outputs. Studies indicate that Al-related papers are more likely to be classified as 'hit'
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papers, ranking in the top 5% of citations within their field and receiving an average of
10.32% more citations than peers (Bianchini, Muller and Pelletier, 2022; Gao and Wang,
2024). While this may indicate that Al is enabling higher-quality work, it could also be
partially driven by the visibility of Al as a trending research topic, underscoring the need
for careful comparative analysis.

Scientific Creativity

Beyond efficiency gains, Al holds the potential to enhance scientific creativity through its
ability to map unchartered parts of large, combinatorial knowledge spaces. In addition, it
can enable "inverse design", where scientists specify a desired functional property (for
example, for a new chemical synthesis) and an Al tool generates and prioritizes
candidates for real-world experimentation (Schweidtmann et al., 2018; Savage et al.,
2024). Al could act as a general method of invention, accelerating discovery by efficiently
directing resources to unknown regions of the knowledge map (Agrawal, McHale and
Oettl, 2018). Agentic workflows, or "co-pilots," that decompose problems and simulate or
automate R&D steps are a potential next step (Hammond, 2023).

However, this potential is weighed against concerns that over-reliance on Al could
diminish scientific diversity. Critics suggest Al may lead to monocultures by diverting
research focus toward problems best suited for computational methods and potentially
hinder the development of foundational theories (Krenn et al., 2022; Messeri and Crockett,
2024). While empirical studies in narrow domains show Al-enabled methods are more
likely to traverse less-explored problem spaces (Chenthamarakshan et al., 2023), wider
evidence suggests a lack of integration between Al and non-Al work, with deep learning
papers in health sciences showing lower recombinatorial novelty (Bianchini, Muller and
Pelletier, 2022; Duede et al., 2024).

Complementarities with other capabilities and domain knowledge

The integration of Al into R&D could change the demand for scientific skills (Bianchini,
Muller and Pelletier, 2022). While some tasks may be automated or deskilled, leading to a
decreased demand for certain skills, new roles combining domain knowledge with Al
expertise are likely to emerge, similar to other domains (Brynjolfsson and Mitchell, 2017;
Brynjolfsson, Li and Raymond, 2023; Eloundou et al., 2023). Al tools might also have the
capacity to lower the barrier to entry for researchers, enabling newcomers or labs with
fewer resources to participate in frontier research (Wang et al., 2023).

Conversely, there are concerns that Al could exacerbate existing research inequalities. The
development and effective application of Al systems still relies on access to
high-performance computing resources and established knowledge networks. For
instance, pharmaceutical firms with greater in-house domain knowledge are more
effective at capitalizing on Al-driven discoveries (Tranchero, 2024). Successfully adopting
Al is often predicated on collaboration between Al experts and domain-specific
researchers, meaning labs with these connections have an advantage (Bianchini, Maller
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and Pelletier, 2024). Therefore, while Al offers the theoretical potential for democratization,
success currently depends on existing capacities, resources, and institutional connections.

1.2 AlphaFold 2: A Case Study for Al in Science

Proteins are a fundamental building block for life, and their complex three-dimensional
structures, dictated by the sequence of amino acids, determine their function.
Experimentally determining these structures, traditionally through methods like X-ray
crystallography (a breakthrough that earned the 1962 Nobel Prize), has historically been a
challenging, time-consuming process often requiring several years of labour (Hill and Stein,
2020). For several decades, the structural biology community also sought computational
methods to predict protein structures and accelerate this process. The Critical Assessment
of Structure Prediction (CASP) competition has been held since 1994 to benchmark results.

The field reached an inflection point with AlphaFold, an Al tool developed by Google
DeepMind. After achieving strong results in CASP13 (2018), its successor, AlphaFold 2,
achieved an accuracy comparable to that of experimental methods at CASP14 (2020)
(Callaway, 2020). This achievement effectively "solved" the decades-old protein folding
problem (AlQuraishi, 2020; Callaway, 2020; Perrakis and Sixma, 2021; Bertoline et al.,
2023; Elofsson, 2023; Brzezinski et al., 2024). Google DeepMind subsequently released the
AlphaFold 2 source code and, in partnership with EMBL-EBI, released a database of over
200 million freely downloadable predicted protein structures (Jumper et al., 2021; Varadi et
al., 2022).

The unexpected success of AlphaFold 2 and its release represents a somewhat exogenous
shock to the field, one that could have significant downstream impacts, including
understanding disease mechanisms, drug discovery, and vaccine development
(Duran-Frigola, Mosca and Aloy, 2013; Hazra and Patra, 2021; Higgins, 2021; Saplakoglu,
2024). Early quantitative analysis suggests that, while it has not increased the volume of
papers published, its use is associated with an 8% increase in citations for adopting
authors and enables the study of longer, more complex, and novel proteins (Yu, 2024).

Our study seeks to expand on this initial evidence by systematically comparing its impact
on scientific outputs and translational research against similar high-impact innovations.

2. Methodology

2.1 Principles

We set out to answer two main research questions:

1. Does AlphaFold 2 lead to impactful research outputs?
2. Do these effects differ from those seen with other frontier developments?

Our study examines the impact of AlphaFold 2 in science and innovation at a systemic
level, adhering to a number of criteria that inform our methodological design:
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1. Study several units of analysis: Study the impacts on researchers who build on
AlphaFold 2 (and other frontier developments), and on their publications.

2. Broad coverage of R&l outputs: Examine a range of research outputs from protein
structures, to academic publications, to clinical trials and patents.

3. Track direct and indirect impacts: Consider research that builds on AlphaFold 2
through direct citations, and diffuse influence through indirect citation chains.

4. Comparative analysis: We compare AlphaFold 2 to leading contemporary
developments in structural biology with similar usage characteristics and to a
‘business-as-usual’ baseline of a wide body of structural biology research.

5. Longitudinal analysis: We examine trends and changes after the adoption of
AlphaFold 2, accounting for pre and post-treatment characteristics to isolate
effects.

2.2 Data

To achieve the criteria for our analysis, we draw on a range of data sources:

OpenAlex: An open database of academic papers, authors and their metadata.
Semantic Scholar: A database of publications that provides enriched citation data.
Protein Data Bank: The primary global database of verified protein structures.
UniProtKB: A large database of protein sequence and function information.
Document Object Identifiers: Standard IDs to link publications and other entities.
iCite: A publication database which categorises clinical articles.

Medical Subject Headings: A taxonomy of concepts related to medical science.
The Lens: An open database that links patents to academic publications.
Cooperative Patent Classification: A taxonomy of patent topics and technologies.

2.3 Methods

Our analytical approach to map AlphaFold 2's impact on structural biology, and its
diffusion into applied research, relies on three main components: a data collection and
enrichment; researcher and laboratory identification; defining counterfactual frontier
developments; and a stringent regression specification.

Data collection and enrichment

The process begins by identifying three core AlphaFold 2 publications: Jumper et al. (2021),
Evans et al. (2022), and Varadi et al. (2022). We then construct a broad citation network
around these works, collecting a large corpus of papers that extends beyond structural
biology. This network allows us to distinguish between research directly linked to the core
papers, termed “adjacent™ and work linked indirectly through secondary citations, termed
“downstream”. To capture the nature of this influence, we further classify these citation
chains based on citation intent, distinguishing between references that provide
background context and those that indicate a direct methodological influence.
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Figure 1. Overview of the dataset construction pipeline. It illustrates the multi-stage process for
building our dataset, designed to track AlphaFold 2's impact from its core publications to adjacent
and downstream research, as well as to applications outside the immediate research sphere.

We then establish a comparative baseline by identifying other frontier developments in
structural biology, a selection process outlined in Figure 2. These developments are
identified based on high citation counts and a distribution of methodological versus
background citations that is comparable to AlphaFold 2. We classify these into three
distinct counterfactual categories: Al-intensive protein prediction, non-Al protein
prediction, and other structural biology innovations.

n = 119,000 n=9,700 g n =2,300 g n=1,028
E g6 '7
2 g
J
Tag publications Filter works with Identify recent works Estimate publications’ Compute intent
with protein prediction with high citatior citation intent and distances to AF,
concepts and Al concepts counts influence dynamics identify closest quintile

Figure 2. Selection process for identifying relevant papers in structural biology using OpenAlex
concepts, CWTS topics, and citation intent metrics from Semantic Scholar.

Once the core and counterfactual networks are established, we enrich the dataset with
extensive metadata. This includes linking publications to tangible outcomes such as
patents, clinical trials, and protein structure submissions. Using author and publication
metadata, we identify established researchers and laboratory leads, specifically targeting
those with consistent and continuous senior authorship. Finally, to assess the quality and
novelty of the scientific output, we incorporate several metrics describing the protein
structures associated with publications in our dataset, such as structure similarity scores.

Regression analysis

We analyse the impact that building on AlphaFold 2 or other frontier developments has on
research and innovation outcomes for publications, researchers and laboratories. By
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comparing to the structural biology baseline, we obtain results that permit analysis of
AlphaFold and the frontier research categories independently and relative to each other.

For example, in the first set of results we show in this report, we show the likelihood that a
publication will be linked to an experimentally verified protein structure if it is linked to
AlphaFold 2 or one of the frontier development counterfactuals, relative to the likelihood
for papers that build on the structural biology baseline. In parallel, we also show the
effects on the likelihood of having work linked to protein structure submissions for
researchers and laboratories.

Our regression analysis seeks to identify associations between AlphaFold 2 use and
impacts on outcome measures, while accounting for potential confounding factors and
selection effects, controlling for unobserved fixed effects that might influence research
outcomes, and controlling for observables like the primary field of a publication.

For researchers, we include additional constraints and methods, including Coarsened
Exact Matching, to mitigate against differences in pre-treatment characteristics among
affecting outcomes. We also carry out initial analysis to verify that pre-treatment career
trajectories among our comparison groups are similar.

A full description of our data sources, dataset construction and regression methodology is
available in the comprehensive literature review, methodology, and results paper, linked in
the Executive Summary.

3. Findings

3.1 Scientific Reach

Breakthrough scientific tools are typically characterised by overcoming a longstanding
bottleneck and then achieving widespread diffusion among researchers. AlphaFold 2
satisfies the first dimension, and we can assess the second by measuring uptake and
influence, quantifying how, where and how quickly it has been integrated into research.

(a) AlphaFold-related Papers
Adjacent

(d) Other Structural Biology Frontiers

(b) Al-intensive Frontiers (c) Protein Prediction Frontiers _
Adjacent

Adjacent Adjacent
1,200

1,000+
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150 150+

100 100
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0
Downstream Downstream Downstream Downstream
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0 0

5,000

’ 0 0
2022 2023 2024 2025 2022 2023 2024 2025 2022 2023 2024 2025

2022 2023 2024 2025
Publication Date (month) Publication Date (month) Publication Date (month) Publication Date (month)

Figure 3. Monthly counts of new adjacent and downstream publications across frontier groups.
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We find nearly 41,000 papers that are adjacent to the AlphaFold 2 core papers, and
640,000 downstream papers. Around 68% of adjacent papers cite AlphaFold 2
methodologically, and 38% in downstream research. This suggests that there is a
substantial body of work that is strongly influenced by AlphaFold 2. The papers linked to
AlphaFold 2 make up 16% of all publications in our final sample of structural biology work.
We also observe that the number of new publications influenced by AlphaFold 2 continues
to grow on a monthly basis, while the number of new papers linked to the other frontier
developments has plateaued since 2024, and now show linear cumulative growth. This is
seen clearly in Figure 3.

We estimate that AlphaFold 2 has been built on methodologically by 63,000 unique
researchers in adjacent papers, and over 726,000 in downstream works. The latter figure
is approaching the number of baseline structural biology papers in our sample (those not
linked to counterfactual frontier developments).

Adjacent Downstream

100% ' Agricultural and Biological Sciences

m Biochemistry, Genetics and Molecular Biology
m Chemistry
Computer Science
m Engineering
m Environmental Science
Immunology and Microbiology
Materials Science
Medicine
0% Neuroscience
Jul 2021 Jul 2022 Jul 2023 Jul 2024 Jul 2021 Jul 2022 Jul 2023 Jul 2024 Other
Date Date

80%

60%

L

Share

40%

20%

Figure 4. Monthly distribution of AlphaFold 2-related publications by primary topic.

Using the primary field associated with each publication, we investigate disciplinary
trends, with trends over time being shown in Figure 4. We find that more than half of
papers adjacent to AlphaFold 2 are focused on biochemistry. In downstream publications,
this number is 30%, with medical sciences comprising a share that is similar in size,
demonstrating diffusion into applied research.

3.2 Protein Structures

AlphaFold 2 has the potential to expedite protein structure determination, and to support
exploration of proteins with structures that were previously very unfamiliar. In this sense, it
is important to measure its impact on the number of proteins being characterised, and on
the direction of research taken by scientists.

Our analysis focuses on proteins whose structures have been determined experimentally,
rather than structures with only a predicted structure. We do this because the data provide
a reliable measure of activity, and because real-world verification of a protein structure is
the ultimate goal. This creates a level playing field with other frontier developments.

In our descriptive analysis of protein structures, shown in Figure 5, we notice that on
average, more established methods tend to be implicated in protein structure discoveries

10
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that are less novel, while AlphaFold 2 is consistently associated with more novel
structures. Other frontier methods are associated with higher structural novelty using
some metrics, but negative results also occur. We also note some differences between
laboratory and researcher outcomes, with researchers experiencing stronger effects
(although some results show low significance). Full results are shown in Figure 6.
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Figure 5. Quarterly rolling mean similarity scores, organism rarity, disease relevance, and resolutions
for papers linked to AlphaFold 2 and other frontier developments.

We separately draw attention to one distinct measure of novelty: the likelihood of research
involving disease-relevant structures. This metric indicates the direction of research, rather
than abstract protein structure novelty. It is also a measure that exhibits strong and
significant effects with a distinct dynamic. First, AlphaFold 2 appears to be associated

11
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with a 39% increase in disease related research activity for laboratories, paralleled by
other frontier structural biology developments. However, AlphaFold 2 is uniquely
associated with a 137% increase in disease related research for established researchers.

= & o

. N Protein N N Protein ) . Protein
Al-intensive L Other SB Al-intensive L Other SB Al-intensive L Other SB
AlphaFold R Prediction . AlphaFold ) Prediction . AlphaFold . Prediction R
Frontiers ) Frontiers Frontiers R Frontiers Frontiers R Frontiers
Frontiers Frontiers Frontiers

RN -~ I -~ =
-19.9%)
Submissions
Novel Proteins (Max
137.7% 44.4%

10.6% 26.9%

TM-score < 0.5)

Number of
Disease-Relevant [
Structures
Crystallographic ﬁ m

3.7%
Resolution

Figure 6. Association between AlphaFold 2, other frontier developments and PDB submissions plus key
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher
statistical significance. Empty cells (no square) mark effects that are statistically insignificant.

40%

This pattern of results can be interpreted in several ways:

e The accuracy of protein structure predictions from AlphaFold 2 compared to other
prediction methods reduces the risk of exploring less characterised areas of the
protein space and protein structures that may be harder to determine.

e A ssignificant number of researchers choose to make the trade off between
investigating more novel proteins and a loss in experimental resolution that also
characterises these structures.

e Comparable impacts experienced by individual researchers and laboratories
building on AlphaFold 2 may be in part due to predictions reducing the complexity
of the team-based science historically required for protein structure determination.

e Experienced researchers, who may become laboratory leads in future, are focusing
more on protein structures implicated in disease related research, suggesting
potential future trends towards more combined novel protein structure
determination and more applied research agendas.

3.3 Academic Output

One speculation surrounding Al is that it will significantly increase the productivity of
research, however empirical evidence for this impact is limited. In addition there are
conflicting opinions about the potential impact of Al on the quality of science. Al might

12
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support scientists to focus on more promising areas of scientific discovery, raising overall
research quality, or lead to a slew of formulaic and incremental publications from
researchers who are incentivised to treat Al outputs themselves as new knowledge.

We measure academic output in two ways. First, we attempt to gauge the effects of
AlphaFold 2 and other frontier developments on researcher publication volumes, to
investigate aggregate effects on scientific productivity. Second, we investigate the count of
citations received by those researchers and their papers, as a proxy for research impact.

o o5

. N Protein N . Protein
Al-intensive s Other SB Al-intensive L Other SB
AlphaFold ) Prediction ) AlphaFold R Prediction R
Frontiers ) Frontiers Frontiers R Frontiers
Frontiers Frontiers

-
Number of Citations
8% 5.6%
Received
Field-Weighted Citation m . m M
2.7% 2.7%
Impact

Figure 7. Association between AlphaFold 2, other frontier developments and PDB submissions plus key
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher

Number of Publications

statistical significance. Empty cells (no square) mark effects that are statistically insignificant.

Figure 7 shows the full results of our regression analysis. For publication volumes, the
results are modest. Researchers building on AlphaFold 2 gain a 2.5% increase in
publication output, while a marginally significant effect is detected for laboratories at 5.1%.
All other frontier developments show positive impacts of a similar magnitude (bar non-Al
frontier structural biology developments for researchers and other Al frontier
developments for laboratories). The high level pattern holds when only methodological
citations are accounted for, with laboratories gaining the highest benefits from AlphaFold
2, and researchers gaining slightly more from other Al methods and protein prediction
methods.

By design, our citation impact analysis suggests that all paper outputs drawing on frontier
developments gain an average and similar increase in citation counts. For AlphaFold 2,
this increase is 28.9%. This pattern holds for both citation counts and the field weighted
citation index (FWCI), which takes into account field- and year-specific citation patterns.

The impact on citation counts for individual researchers and laboratories are smaller in
size, but exhibit an interesting pattern. When only raw citation counts are taken into
account, researchers and laboratories gain a comparable citation count benefit from
AlphaFold 2 (8% and 10.4% respectively), surpassing the positive but smaller associations
observed for most other frontier developments. When FWCl is used to account for field
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differences, a distinct pattern emerges: AlphaFold 2 yields robust positive associations for
both researchers and laboratories, whereas other Al frontier developments show no
significant association with citation impact.

We repeat the analysis to compare methodological and background citations and note
similar patterns, although there is limited difference between the two types of use. In most
cases, the associations linked with methodological use of AlphaFold 2 and frontier
developments are similar to background use.

There are several ways to interpret the results here, which suggest a range of possible
dynamics at play:

e Despite our attempts to account for them, it is not possible to entirely disentangle
pre-treatment trends and selection effects, meaning that we cannot say with
certainty whether researchers, who appear more productive and prolific in this
study, are adopting frontier developments, including AlphaFold 2, or whether those
tools and techniques are themselves driving the pace and quality of research.

e Nonetheless, the citation results are somewhat unsurprising. We would expect any
scientific works building on frontier developments in their field to result in greater
downstream citation impact, due to their recognition for field advancement.

e We know that the publications downstream of the source papers in this study are
spread across a range of fields. We also know that many of the citations for
AlphaFold and Al frontier are in computer science. The gains in FWCI associated
with AlphaFold 2 compared to other Al frontier developments could be explained
by AlphaFold 2 having wider applicability in work outside of its original intended
application.

3.4 Applied Research

While the expectations around the impacts of Al on scientific knowledge generation are
contested, it is clear that AlphaFold 2 is able to map large numbers of candidates for
downstream applications in the bioscience and biomedical domains. This use of Al to
break bottlenecks in search and optimisation problems is a pattern common to research
efforts on Al in many disciplines. It is therefore important to assess the translational
impacts of AlphaFold 2.

We measure the influence of AlphaFold 2 and frontier developments in structural biology
across three dimensions of applied activity: disease-focused research activity, clinical
trials, and patenting. This provides insight into the influence of AlphaFold 2 and
comparable frontier developments in structural biology beyond academic discovery.

For scale, we present the number of translational outputs associated with AlphaFold 2
papers in Table 1.
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Count
Article type Adjacent Downstream
Disease related publication 3,097 76,320
Clinical publication 239 12,787
Patent 100 3,800

Table 1. Counts of adjacent and downstream applied articles linked to AlphaFold 2.

Disease relevance is measured by the presence of Medical Subject Headings (MeSH)
C-class terms in publications. This branch of the MeSH taxonomy is titled ‘Diseases’. By
this definition, we find that 9.4% of papers adjacent to AlphaFold 2 and 14.8% of
downstream papers are disease related, as seen in Figure 8. This is lower than general
structural biology work, of which around 24% is disease related, but on average higher
than other frontier Al developments (10.6% and 12.2% for adjacent and downstream
papers respectively).

Adjacent Downstream

100% MeSH Tag
o Analytical, Diagnostic and Therapeutic T&E
80%-
m Anatomy
= Anthropology, Education, S&S Phenomena
Chemicals and Drugs

40% = | h m Disciplines and Occupations

J"---_i—l-l"d—- [ -—_.-——"— m Diseases
o/, | Organisms

20% M '_# Phenomena and Processes

o Psychiatry and Psychology
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Jul 2021 Jul 2022 Jul 2023 Jul 2024  Jul 2021 Jul 2022 Jul 2023 Jul 2024 Technology, Industry, and Agriculture
Date Date

60%-

Share

Figure 8. Monthly distribution of AF2-related publications by MeSH category.

In our regression analysis, we find that papers building on AlphaFold 2 and other frontier
Al are no more likely to be disease related than structural biology in general, while works
that build structural biology and protein structure prediction frontier are positively
associated with MeSH C terms. These associations are shown in Figure 9. This
relationship becomes positive for AlphaFold 2 when we observe the work of researchers
(9.3%) and laboratories (5.0%).

Clinical articles are identified through their study design and content, covering randomised
controlled trials, clinical trials, and observational studies that directly involve human
subjects or clinical specimens. We find that papers citing AlphaFold 2 have a positive
association with citations from clinical work, with a likelihood almost double that of the
structural biology baseline papers. Positive effects are also seen for Al and protein
prediction frontier papers, albeit at just over half this magnitude. However, at the
researcher and laboratory level, we see no statistically significant association between
AlphaFold 2, or any other frontier developments, and clinical citations (bar a modest
positive association for protein prediction frontier developments built on by laboratories).
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Figure 9. Association between AlphaFold 2, other frontier developments and PDB submissions plus key
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher
statistical significance. Empty cells (no square) mark effects that are statistically insignificant.

For patent citations we measure patent-to-paper as a measure for translational diffusion
and patent-to-patent citations as a proxy for patent quality. We find a strong positive
association for the likelihood of papers building on all frontier developments, including
AlphaFold 2, to be cited by patents compared to the structural biology baseline. For
AlphaFold 2 and other Al frontier methods, this positive association holds for researchers
and laboratories. For patent-to-patent quality, we observe that patents building on
publications linked to AlphaFold 2 are almost twice as likely to be cited by other patents
than baseline structural biology, with a smaller, but also positive association for other Al
frontier work. However, no significant impacts are observed for researchers or laboratories
who produce work linked to any frontier development and are cited in patents.

Together these results suggest several trends:

e A substantial proportion of all structural biology research results in translational
outputs across clinical trials, disease related research and commercial patents. This
holds true for frontier developments, including AlphaFold 2, of which a few percent
of publications provide supporting inputs. This is significant as it demonstrates that
AlphaFold 2 has diffused into application in a timeframe that is comparable with
other frontier developments that might be more familiar to downstream
researchers and innovators.

e While publications which cite frontier research appear to consistently be positively
associated with translational research outputs than the structural biology baseline,
this effect does not consistently translate to the researchers and laboratories
producing that body of work across all measures. This is perhaps due to the small
numbers or concentrated nature of applied research, meaning that systematic
effects are not present or hard to detect.
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4. Conclusions

4.1 Summary

Our study has examined the impact of AlphaFold 2 on experimental structural biology,
academic outputs and translational results, revealing its emerging impacts on the
acceleration of research and scientific impact across a diversity of fields, as compared to
other structural biology developments. AlphaFold 2's impact over the time frame covered
by this investigation is characterised by:

e A substantial influence on structural biology as characterised by a continued strong
growth in AlphaFold 2’s diffusion among the field at large. This suggests the
emergence of a new platform for structural biology research alongside more
established techniques implicated in other frontier developments.

e A significant and consistent boost in experimental structure submissions and a
diversification in the range of proteins explored. AlphaFold 2 seems to be making a
unique contribution by comparison to other frontier techniques which for example
are linked to less novel protein structures. Our findings are consistent across
frontier developments and for both researchers and laboratories.

e A modestincrease in the academic productivity of its adopters accompanied by a
growth in the citations that this research receives. The effects of counterfactual
frontier techniques are similar in some cases, but AlphaFold 2's impact profile tends
to be slightly stronger, and more consistent than other contemporary Al tools,
particularly when field weighted citations are accounted for.

e A varied and nuanced impact on translational outputs. Papers citing AlphaFold 2
are not linked to an increase in disease-related research, but there is a positive
association for researchers and laboratories building on AlphaFold 2. For clinical
article citations this reverses - AlphaFold 2 associated with gains for papers, but
not for researchers and laboratories. Papers, researchers and laboratories building
on AlphaFold 2 are all positively associated with higher patent citation rates.
Similarly mixed results appear for other frontier developments, suggesting the
occurrence of translational impacts is dictated by underlying mechanisms.

Our analysis is carried out at a high level, investigating systemic impacts of AlphaFold 2
and other frontier developments in structural biology. It is not supported by additional
nuanced analysis and substantial qualitative research that would be required to
understand the underlying dynamics and drivers that lead to particular results and the
differences between them.

4.2 Limitations

The findings presented in this report should be interpreted in light of several data and
methodological limitations.
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Endogeneity and Causality: Despite using robust matching methods, the study cannot
fully rule out unobserved factors, such as resources available or strategic priorities, that
influence researcher adoption decisions. Strict causal links cannot be established in the
absence of an experimental design.

Temporal and Metric Bias: Comparing frontier technologies is complicated by varying
release dates. Older methods have had significantly more time to accrue citations than
AlphaFold 2. Downstream impacts, for example measured by patent data, likely
underestimate applied impact by missing proprietary or unpublished applications.

Overestimation of Usage Intensity: The methodology assumes that past citations imply
future adoption or influence, which likely overestimates the actual intensity of day-to-day
usage. This metric should be interpreted as a signal of technological exposure rather than
a measure of consistent reliance upon a category of frontier development.

Lack of Interaction Effects: The model treats the adoption of different frontier
technologies as independent variables, despite the fact that researchers may use multiple
advanced methods simultaneously. Consequently, the analysis cannot isolate potential
synergistic benefits or substitution effects between AlphaFold 2 and other tools.

Data Constraints: Data noise regarding authorship and affiliations in OpenAlex imposes
constraints on the granularity of the analysis. Additionally, limited citation intent data
results in a loss of statistical power due to sample attrition, constraining our analysis.

Aggregate Nature of Findings: The focus on average effects may mask important
distributional impacts and fails to explain the underlying mechanisms driving the results.
As a result, while the findings highlight important dynamics, the specific interpretations
and conclusions remain broadly speculative.

4.3 Discussion

This study supports the notion of high performance Al as a valuable research tool, and
hints at it providing a new method of invention. We conclude this report by discussing the
implications of our findings through the lens of scientific exploration, research productivity,
and invention.

Scientific exploration

Our work supports the idea of Al as a tool for enhancing scientific search and discovery.
The consistent association of AlphaFold 2 with more novel protein structures suggests
that the tool is used to characterise proteins in less chartered parts of the protein universe.
These findings suggest the capacity of Al to open up additional avenues for research
within a problem space, and is in line with existing work on the use of AlphaFold 2 (Yu,
2024).

We speculate that AlphaFold 2 lowers the cost barrier and reduces the risks associated
with research portfolio diversification. This is enabled by the tool being free and open to
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use, and by the release of a large volume of predicted protein structures in the AlphaFold
Protein Database, with self-assessed accuracy evaluations. The patterns we observe
align with the notion that predictive Al tools can facilitate efficient resource allocation. By
screening large knowledge spaces computationally they could allow researchers to direct
experimental and applied efforts toward high value targets, avoiding diminishing returns
of further exploring better known structure types (Agrawal, McHale and Oettl, 2024).

Our findings suggest that Al is a tool that can potentially mitigate the ‘streetlight effect’, in
which it is much easier for scientists to explore areas where it is possible to build on data
about existing structures (Tranchero et al., 2022; Tranchero, 2024). AlphaFold 2 serves as
the solution to an engineering problem that previously restricted our view of the protein
population. The ability of the tool to map new spaces, and direct research efforts towards
them, points more toward Al being a tool that can open up new questions. Thus, while this
type of Al does not generate new scientific knowledge, as an engineering solution it can
qualitatively shift the directionality of research.

It is important to note that our findings does not allay another concern that the uptake of
Al will lead to scientists overly focusing on problems that are suited to Al or that
overreliance on Al will diminish the ability of science to understand mechanisms that drive
phenomena observed in the lab (Messeri and Crockett, 2024). While it is possible that
Al-enhanced exploration may itself open up surprising new research avenues, the policy
decisions and funders can also help to guard against monocultures at the macro level, by
encouraging the pursuit of novel, path breaking research that might lean less heavily on Al.

Research Productivity

As well as encouraging exploration leading to the experimental discovery of new protein
structures, AlphaFold 2's ability to provide highly accurate protein structure predictions has
enabled researchers to produce publications of enhanced quality in marginally higher
volumes. This is evidenced by a consistent enhancement in citation impact across
disciplines and complemented by the substantially higher volumes of associated Protein
Databank structures. From our descriptive analysis we see that it is likely that these
positive effects also spill over into other fields. At a systemic level, we do not observe a
factory-like churn of publications linked to AlphaFold 2. The publication rates for
researchers and laboratories leveraging AlphaFold 2 increase in line with other frontier
developments.

These combined aspects of AlphaFold 2's success support the ‘Hassabis hypothesis,
which suggests that Al-based predictive models can significantly advance scientific
discovery when applied to problems with a defined objective, vast search spaces, and
ample data or simulation capabilities, given the relative ineffectiveness of other modelling
methods in that domain (Agrawal, McHale and Oettl, 2024). The complex and unsolved
challenge of protein folding prediction satisfies these criteria, and our analysis provides
evidence of the impact AlphaFold 2 has had on that problem.
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Other observed increases in citation impact, such as those in clinical research, indicate
AlphaFold 2's ability to not only advance fundamental research, but also to assist the
wider development of impactful, pointing to spillover effects that advance science as a
whole.

One nuance within these findings is that the productivity benefits of using AlphaFold 2 are
typically higher for laboratories than established researchers, but the inverse is true for
citation impact when measured by FWCI. Indeed, this is broadly true of all frontier
developments included in the study. This suggests that laboratories are able to leverage
economies of scale and flexibility in order to adopt new methods and incorporate them
into larger scientific processes, which is an important aspect in the diffusion of Al methods.
Other factors that may play a role include the experience contained within labs, access to
knowledge through larger collaboration networks, and resources and infrastructure, which
may make it easier to leverage Al methods. Nonetheless, this does not totally discount the
ability of researchers who are not lab leads to leverage Al in potentially more agile ways,
and produce research of high impact in their respective fields.

AlphaFold 2 has made an impact in structural biology research, including experimentation,
but does not excel in all areas of impact in comparison to the counterfactual frontier
developments we have chosen. Our weaker and contradictory evidence around
translational impacts could be linked to lags in the translation of novel research into
innovations, and the limited timeframe available since AlphaFold 2’s release. Our results
are indicative of the direction of travel for Al in science, but do not comprehensively cover
the full breadth of impacts, nor the longer term potential benefits or drawbacks of its wider
adoption. New improvements to AlphaFold 2 are enhancing its performance and
addressing its limitations, potentially increasing its impact, and presenting future
opportunities for study (Abramson et al., 2024). Other recent developments in the ability to
develop large language models with greatly reduced inputs suggest nonlinear progress in
Al development may reduce some of the barriers required for researchers to build new Al
tools and see them proliferate within other fields (DeepSeek-Al et al., 2025).

Al Integration

Results in this study demonstrate that AlphaFold 2 is built upon by researchers to produce
increased levels of experimentally verified protein structures. This finding in particular is
consistent with the idea that AlphaFold 2 is a complement to experimental and
domain-specific work rather than a substitute. This adds texture to the “oil and water”
phenomenon by suggesting that the lack of integration between Al and existing research
within a discipline is not a fixed property, but rather an attribute of specific Al, the
problems they seek to solve and the task and collaboration configurations required (Duede
et al., 2024).

This result is complemented by the use of AlphaFold 2 across disciplines. This is in part
driven by its generalisable transformer neural network architecture, which distinguishes it
from other protein structure prediction innovations in structural biology. Some of our
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findings point to impacts where other Al innovations have struggled to make inroads, that
in some cases it matches the impact of frontier non-Al developments in structural biology.
The fact that this impact also stretches beyond biochemistry suggests that AlphaFold 2
presents a significant advancement on the state of Al within the field, while also pushing
the state-of-the-art for Al in general. This highlights the potential compounding effect of
Al advancements across science if adopted as a general method of invention.

Finally, we see emerging signals of AlphaFold 2's influence in more applied research and
development. The somewhat contradictory results, relatively small numbers of adjacent
translational outputs, and the fact that other frontier developments prove similarly likely to
contribute to applied impacts suggests a number of dynamics. The first is that there is an
obvious lag time between new transformational innovations and effects on applied and
commercial innovation activities. We speculate that despite being a technology of
transformative potential, AlphaFold 2 is experiencing this lag in part because the research
ecosystem will need to undergo certain reconfigurations to realise its full potential.
Laboratories and the individuals within them will likely need to engage in new specialisms,
develop new collaboration patterns, and identify ways to manage the end-to-end
processes that employ new Al tools to create applied knowledge and innovative outputs.

Supporting Science with Al

Based on this investigation and our findings, we suggest three priority actions that might
enhance the impacts of Al in science, based on our findings relating to AlphaFold 2:

e Ensure that funds to support fundamental scientific discovery are balanced with
the desire to develop and capitalise on new Al tools. Funders should be aware of
the benefits and limitations of Al and design calls for proposals to promote distinct
research, as well as encourage better integration. In this way the science
ecosystem can efficiently support the translation of newly mapped problem spaces
into new knowledge.

e For successful Al prediction tools that are sufficiently accurate and demonstrate
strong adoption among researchers, early efforts should be made to ensure a
proportion of Al R&D is focused towards creating infrastructure and open access
tools required for researchers to take advantage of them. Our findings suggest that
established researchers can use Al tools to take research fields in new and applied
directions, which can be further supported by lowering the barrier to entry.

e Where Al leads to an explosion of the mapped space in a field, new tools for
knowledge management and exploring that space should be developed. For
proteins there are structure databases, but linking these with interactive tools that
link structures and academic knowledge in interactive ways, using natural
language queries and building on existing research workflows could be powerful.

We also suggest three additional areas for research that would build on our work here and
fill important evidence gaps. These are: economic analysis to understand how Al impacts
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the allocation and efficiency of research spending; qualitative research to more deeply
understand how scientists are integrating Al into their workflows; and collaboration
analysis using co-authorship data to understand how team composition and
multidisciplinary integration are being affected at the ecosystem scale.
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