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Executive Summary 
Artificial intelligence tools and methods are diffusing within scientific research. Questions 
exist over their effects on the productivity, diversification and quality of research, however, 
robust evidence of systemic impacts of AI in science are limited. 

AlphaFold 2 is an AI tool, developed by Google DeepMind in 2021, that addresses a 
longstanding problem in structural biology - protein structure prediction. The performance 
of AlphaFold 2 was unanticipated and is recognised for addressing this challenge. The tool 
and a database of 200 million predicted protein structures have been released for free. 
These characteristics make AlphaFold 2 a valuable case study. 

Our analysis studies 5 million academic publications, clinical articles, patents and protein 
structures to investigate the impact of AlphaFold 2. We measure the association of 
AlphaFold 2 with scientific productivity, novel research and applied outcomes. We assess 
direct and indirect impacts of the tool against a baseline of structural biology research, and 
other high impact, contemporary developments in four key areas. 

Scientific reach: 550,000 publications are linked to AlphaFold 2 directly and indirectly, 
involving almost 2 million unique researchers, with the latter measure of reach exceeding 
that of other frontier developments. However, AlphaFold 2’s influence continues to grow, 
while others have plateaued. We also estimate that 218,000 articles incorporate elements 
of AlphaFold 2 into their methodology.  

Experimental structural biology: Researchers building on AlphaFold 2 demonstrate a 
45% - 49% increased rate of experimental protein structure submissions, higher than rates 
for those adopting other frontier developments. Influence of the tool is also associated with 
consistently more unique protein structures, demonstrating a tendency to increase novelty. 
However, structure resolution is lower in these less chartered parts of the protein universe. 

Academic productivity and quality: Links to AlphaFold 2 lead to a modest increase in 
publication rates for researchers (2.5%) and laboratories (5.1%), similar to other frontier 
developments. Citation counts for research papers building on AlphaFold 2 and other 
frontier developments exhibit increases between 25% and 30%. Normalising citation 
counts by field and year still yields positive associations, with AlphaFold 2 performing 
strongly for researchers and laboratories. 

Applied research and innovation: There is a generally positive impact associated with 
AlphaFold 2 across the areas that we examine, consistent with an emerging technology, 
and similar to more established frontier developments. In particular, individual researchers 
using AlphaFold 2 have a 9.3% greater likelihood of publishing disease related research. 
Papers linked to AlphaFold 2 are twice as likely to be cited in clinical articles, double the 
increase of other AI protein prediction developments, but researchers themselves see no 
increase. We find that research and researchers building on AlphaFold 2 are between 
22.6% and 34.2% more likely to be cited by a patent, similar to other frontier 
developments. 
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Conclusions 

AlphaFold 2 is generally associated with positive impacts across the dimensions 
investigated here. The effect sizes are typically on par with, or exceed, other frontier 
developments in terms of magnitude, and are more consistent, particularly with respect to 
other frontier AI developments. In addition, it is now leveraged over a much larger 
population of researchers. This demonstrates that high accuracy, predictive AI tools can 
diffuse across science as quickly as high impact research built on more established 
approaches. 

We also find that AlphaFold 2’s impacts on protein structure exploration hold significance 
for AI in science. First, the tool’s high association with novel protein structures highlights 
that AI tools which are used to make predictions to map large knowledge spaces can 
encourage greater exploration of previously uncharted areas. This may be as a result of 
lowering the associated risks and costs for researchers. Second, its strong positive 
association with experimental outputs is indicative of good integration within teams and 
existing methods and domain knowledge, challenging the notion that AI and existing 
research methods do not mix well. This is reinforced by AlphaFold 2’s emerging 
association with applied outputs, which suggests that despite its recency, it is capable of 
translational impact that spans fundamental and applied research. 

Our study suggests that when AI is applied to a bottleneck problem with a clear definition 
and existing data, it can unlock progress in science. However, our study is not exhaustive. 
We are not able to verify that AI does not lead to ‘streetlight effects’ (systemic 
concentration on AI shaped problems), or that it is reaching its full potential. We suggest 
nonetheless that the positive effects should be capitalised upon, while science policy and 
funding decisions should be used to ensure science uses AI in ways that are 
complementary to existing methods of knowledge generation, and that additional tools 
and infrastructure for researchers can be developed to bolster impacts. 

The work presented in this report is supported by a comprehensive literature review, 
methodology and results paper available from the Innovation Growth Lab. 
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1. Introduction 
Artificial intelligence (AI) has become increasingly integrated into scientific research, driven 
by advancements in neural networks and the collection of large scale data. Its rapid 
adoption is evident across all fields; research publications referencing AI keywords rose 
from 5% in 2020 to over 8% in 2022, with approximately half of this activity now occurring 
outside of traditional computer science and mathematics disciplines (Gargiulo et al., 2022; 
Duede et al., 2024). This integration has fueled discussions about AI’s potential to 
accelerate discovery and widen the scope of scientific exploration (Wang et al., 2023; 
Agrawal, McHale and Oettl, 2024; Bail, 2024; Messeri and Crockett, 2024; Sumner, 2024). 
However, the exact nature of its impact remains an open empirical question, with debates 
centering on whether AI will ultimately unlock substantial productivity gains and enrich 
science or, conversely, create "streetlight effects" that narrow research focus toward 
data-rich, low-hanging fruit (Tranchero et al., 2022). 

The present study contributes to this evidence base through an in-depth, quantitative 
analysis of AlphaFold 2, a protein structure prediction system released in 2021 (Jumper et 
al., 2021). AlphaFold 2 represents a unique, high-impact case study as it addressed a 
critical, long-standing bottleneck in structural biology and the wider life sciences. Its 
successful development earned its creators the 2024 Nobel Prize in Chemistry (Callaway, 
2020; Brzezinski et al., 2024). By comparing AlphaFold 2’s impact against other 
contemporary frontier developments in structural biology (both AI-intensive and 
traditional) we investigate its influence on experimental discovery, research productivity, 
and translational outcomes. The following sections summarize the existing literature on 
AI’s impact in science before introducing additional details about the development and 
release of AlphaFold 2. 

1.1 The Impact of AI on Science 

Productivity 

One primary promise of AI in science is its capacity for automated, high-throughput 
prediction, leading to increased efficiency across the research process. Early application of 
AI  in science involved researchers building bespoke models using open-source packages 
(Pedregosa et al., 2011; Abadi et al., 2016; Paszke et al., 2019). Today, there are an 
increasing number of large pre-trained models (e.g., MetNet for forecasting, GNoME for 
material properties) and general-purpose generative AI (ChatGPT, Gemini, Claude) that 
assist with tasks ranging from code writing to simulating social science experiments 
(Sønderby et al., 2020; Andrychowicz et al., 2023; Jakubik et al., 2023; Merchant et al., 
2023; Vaswani et al., 2023). 

Emerging evidence suggests a positive association between AI and high-impact research 
outputs. Studies indicate that AI-related papers are more likely to be classified as 'hit' 
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papers, ranking in the top 5% of citations within their field and receiving an average of 
10.32% more citations than peers (Bianchini, Müller and Pelletier, 2022; Gao and Wang, 
2024). While this may indicate that AI is enabling higher-quality work, it could also be 
partially driven by the visibility of AI as a trending research topic, underscoring the need 
for careful comparative analysis. 

Scientific Creativity 

Beyond efficiency gains, AI holds the potential to enhance scientific creativity through its 
ability to map unchartered parts of large, combinatorial knowledge spaces. In addition, it 
can enable "inverse design", where scientists specify a desired functional property (for 
example, for a new chemical synthesis) and an AI tool generates and prioritizes 
candidates for real-world experimentation (Schweidtmann et al., 2018; Savage et al., 
2024). AI could act as a general method of invention, accelerating discovery by efficiently 
directing resources to unknown regions of the knowledge map (Agrawal, McHale and 
Oettl, 2018). Agentic workflows, or "co-pilots," that decompose problems and simulate or 
automate R&D steps are a potential next step (Hammond, 2023). 

However, this potential is weighed against concerns that over-reliance on AI could 
diminish scientific diversity. Critics suggest AI may lead to monocultures by diverting 
research focus toward problems best suited for computational methods and potentially 
hinder the development of foundational theories (Krenn et al., 2022; Messeri and Crockett, 
2024). While empirical studies in narrow domains show AI-enabled methods are more 
likely to traverse less-explored problem spaces (Chenthamarakshan et al., 2023), wider 
evidence suggests a lack of integration between AI and non-AI work, with deep learning 
papers in health sciences showing lower recombinatorial novelty (Bianchini, Müller and 
Pelletier, 2022; Duede et al., 2024). 

Complementarities with other capabilities and domain knowledge 

The integration of AI into R&D could change the demand for scientific skills (Bianchini, 
Müller and Pelletier, 2022). While some tasks may be automated or deskilled, leading to a 
decreased demand for certain skills, new roles combining domain knowledge with AI 
expertise are likely to emerge, similar to other domains (Brynjolfsson and Mitchell, 2017; 
Brynjolfsson, Li and Raymond, 2023; Eloundou et al., 2023). AI tools might also have the 
capacity to lower the barrier to entry for researchers, enabling newcomers or labs with 
fewer resources to participate in frontier research (Wang et al., 2023). 

Conversely, there are concerns that AI could exacerbate existing research inequalities. The 
development and effective application of AI systems still relies on access to 
high-performance computing resources and established knowledge networks. For 
instance, pharmaceutical firms with greater in-house domain knowledge are more 
effective at capitalizing on AI-driven discoveries (Tranchero, 2024). Successfully adopting 
AI is often predicated on collaboration between AI experts and domain-specific 
researchers, meaning labs with these connections have an advantage (Bianchini, Müller 
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and Pelletier, 2024). Therefore, while AI offers the theoretical potential for democratization, 
success currently depends on existing capacities, resources, and institutional connections. 

1.2 AlphaFold 2: A Case Study for AI in Science 
Proteins are a fundamental building block for life, and their complex three-dimensional 
structures, dictated by the sequence of amino acids, determine their function. 
Experimentally determining these structures, traditionally through methods like X-ray 
crystallography (a breakthrough that earned the 1962 Nobel Prize), has historically been a 
challenging, time-consuming process often requiring several years of labour (Hill and Stein, 
2020). For several decades, the structural biology community also sought computational 
methods to predict protein structures and accelerate this process. The Critical Assessment 
of Structure Prediction (CASP) competition has been held since 1994 to benchmark results. 

The field reached an inflection point with AlphaFold, an AI tool developed by Google 
DeepMind. After achieving strong results in CASP13 (2018), its successor, AlphaFold 2, 
achieved an accuracy comparable to that of experimental methods at CASP14 (2020) 
(Callaway, 2020). This achievement effectively "solved" the decades-old protein folding 
problem (AlQuraishi, 2020; Callaway, 2020; Perrakis and Sixma, 2021; Bertoline et al., 
2023; Elofsson, 2023; Brzezinski et al., 2024). Google DeepMind subsequently released the 
AlphaFold 2 source code and, in partnership with EMBL-EBI, released a database of over 
200 million freely downloadable predicted protein structures (Jumper et al., 2021; Varadi et 
al., 2022).  

The unexpected success of AlphaFold 2 and its release represents a somewhat exogenous 
shock to the field, one that could have significant downstream impacts, including 
understanding disease mechanisms, drug discovery, and vaccine development 
(Duran-Frigola, Mosca and Aloy, 2013; Hazra and Patra, 2021; Higgins, 2021; Saplakoglu, 
2024). Early quantitative analysis suggests that, while it has not increased the volume of 
papers published, its use is associated with an 8% increase in citations for adopting 
authors and enables the study of longer, more complex, and novel proteins (Yu, 2024).  

Our study seeks to expand on this initial evidence by systematically comparing its impact 
on scientific outputs and translational research against similar high-impact innovations. 

2. Methodology 

2.1 Principles 
We set out to answer two main research questions: 

1. Does AlphaFold 2 lead to impactful research outputs? 
2. Do these effects differ from those seen with other frontier developments? 

Our study examines the impact of AlphaFold 2 in science and innovation at a systemic 
level, adhering to a number of criteria that inform our methodological design: 
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1. Study several units of analysis: Study the impacts on researchers who build on 
AlphaFold 2 (and other frontier developments), and on their publications. 

2. Broad coverage of R&I outputs: Examine a range of research outputs from protein 
structures, to academic publications, to clinical trials and patents. 

3. Track direct and indirect impacts: Consider research that builds on AlphaFold 2 
through direct citations, and diffuse influence through indirect citation chains. 

4. Comparative analysis: We compare AlphaFold 2 to leading contemporary 
developments in structural biology with similar usage characteristics and to a 
‘business-as-usual’ baseline of a wide body of structural biology research. 

5. Longitudinal analysis: We examine trends and changes after the adoption of 
AlphaFold 2, accounting for pre and post-treatment characteristics to isolate 
effects. 

2.2 Data 
To achieve the criteria for our analysis, we draw on a range of data sources: 

● OpenAlex: An open database of academic papers, authors and their metadata. 
● Semantic Scholar: A database of publications that provides enriched citation data. 
● Protein Data Bank: The primary global database of verified protein structures. 
● UniProtKB: A large database of protein sequence and function information. 
● Document Object Identifiers: Standard IDs to link publications and other entities. 
● iCite: A publication database which categorises clinical articles. 
● Medical Subject Headings: A taxonomy of concepts related to medical science. 
● The Lens: An open database that links patents to academic publications. 
● Cooperative Patent Classification: A taxonomy of patent topics and technologies. 

2.3 Methods 
Our analytical approach to map AlphaFold 2’s impact on structural biology, and its 
diffusion into applied research, relies on three main components: a data collection and 
enrichment; researcher and laboratory identification; defining counterfactual frontier 
developments; and a stringent regression specification. 

Data collection and enrichment 

The process begins by identifying three core AlphaFold 2 publications: Jumper et al. (2021), 
Evans et al. (2022), and Varadi et al. (2022). We then construct a broad citation network 
around these works, collecting a large corpus of papers that extends beyond structural 
biology. This network allows us to distinguish between research directly linked to the core 
papers, termed “adjacent”' and work linked indirectly through secondary citations, termed 
“downstream”. To capture the nature of this influence, we further classify these citation 
chains based on citation intent, distinguishing between references that provide 
background context and those that indicate a direct methodological influence. 
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Figure 1. Overview of the dataset construction pipeline. It illustrates the multi-stage process for 
building our dataset, designed to track AlphaFold 2’s impact from its core publications to adjacent 

and downstream research, as well as to applications outside the immediate research sphere. 

We then establish a comparative baseline by identifying other frontier developments in 
structural biology, a selection process outlined in Figure 2. These developments are 
identified based on high citation counts and a distribution of methodological versus 
background citations that is comparable to AlphaFold 2. We classify these into three 
distinct counterfactual categories: AI-intensive protein prediction, non-AI protein 
prediction, and other structural biology innovations. 

Figure 2. Selection process for identifying relevant papers in structural biology using OpenAlex 
concepts, CWTS topics, and citation intent metrics from Semantic Scholar. 

Once the core and counterfactual networks are established, we enrich the dataset with 
extensive metadata. This includes linking publications to tangible outcomes such as 
patents, clinical trials, and protein structure submissions. Using author and publication 
metadata, we identify established researchers and laboratory leads, specifically targeting 
those with consistent and continuous senior authorship. Finally, to assess the quality and 
novelty of the scientific output, we incorporate several metrics describing the protein 
structures associated with publications in our dataset, such as structure similarity scores. 

Regression analysis 

We analyse the impact that building on AlphaFold 2 or other frontier developments has on 
research and innovation outcomes for publications, researchers and laboratories. By 
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comparing to the structural biology baseline, we obtain results that permit analysis of 
AlphaFold and the frontier research categories independently and relative to each other. 

For example, in the first set of results we show in this report, we show the likelihood that a 
publication will be linked to an experimentally verified protein structure if it is linked to 
AlphaFold 2 or one of the frontier development counterfactuals, relative to the likelihood 
for papers that build on the structural biology baseline. In parallel, we also show the 
effects on the likelihood of having work linked to protein structure submissions for 
researchers and laboratories. 

Our regression analysis seeks to identify associations between AlphaFold 2 use and 
impacts on outcome measures, while accounting for potential confounding factors and 
selection effects, controlling for unobserved fixed effects that might influence research 
outcomes, and controlling for observables like the primary field of a publication. 

For researchers, we include additional constraints and methods, including Coarsened 
Exact Matching, to mitigate against differences in pre-treatment characteristics among 
affecting outcomes. We also carry out initial analysis to verify that pre-treatment career 
trajectories among our comparison groups are similar. 

A full description of our data sources, dataset construction and regression methodology is 
available in the comprehensive literature review, methodology, and results paper, linked in 
the Executive Summary. 

3. Findings 

3.1 Scientific Reach 
Breakthrough scientific tools are typically characterised by overcoming a longstanding 
bottleneck and then achieving widespread diffusion among researchers. AlphaFold 2 
satisfies the first dimension, and we can assess the second by measuring uptake and 
influence, quantifying how, where and how quickly it has been integrated into research. 

Figure 3. Monthly counts of new adjacent and downstream publications across frontier groups. 
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We find nearly 41,000 papers that are adjacent to the AlphaFold 2 core papers, and 
640,000 downstream papers. Around 68% of adjacent papers cite AlphaFold 2 
methodologically, and 38% in downstream research. This suggests that there is a 
substantial body of work that is strongly influenced by AlphaFold 2. The papers linked to 
AlphaFold 2 make up 16% of all publications in our final sample of structural biology work. 
We also observe that the number of new publications influenced by AlphaFold 2 continues 
to grow on a monthly basis, while the number of new papers linked to the other frontier 
developments has plateaued since 2024, and now show linear cumulative growth. This is 
seen clearly in Figure 3. 

We estimate that AlphaFold 2 has been built on methodologically by 63,000 unique 
researchers in adjacent papers, and over 726,000 in downstream works. The latter figure 
is approaching the number of baseline structural biology papers in our sample (those not 
linked to counterfactual frontier developments). 

 
Figure 4. Monthly distribution of AlphaFold 2-related publications by primary topic. 

Using the primary field associated with each publication, we investigate disciplinary 
trends, with trends over time being shown in Figure 4. We find that more than half of 
papers adjacent to AlphaFold 2 are focused on biochemistry. In downstream publications, 
this number is 30%, with medical sciences comprising a share that is similar in size, 
demonstrating diffusion into applied research. 

3.2 Protein Structures 
AlphaFold 2 has the potential to expedite protein structure determination, and to support 
exploration of proteins with structures that were previously very unfamiliar. In this sense, it 
is important to measure its impact on the number of proteins being characterised, and on 
the direction of research taken by scientists. 

Our analysis focuses on proteins whose structures have been determined experimentally, 
rather than structures with only a predicted structure. We do this because the data provide 
a reliable measure of activity, and because real-world verification of a protein structure is 
the ultimate goal. This creates a level playing field with other frontier developments. 

In our descriptive analysis of protein structures, shown in Figure 5, we notice that on 
average, more established methods tend to be implicated in protein structure discoveries 
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that are less novel, while AlphaFold 2 is consistently associated with more novel 
structures. Other frontier methods are associated with higher structural novelty using 
some metrics, but negative results also occur. We also note some differences between 
laboratory and researcher outcomes, with researchers experiencing stronger effects 
(although some results show low significance). Full results are shown in Figure 6. 

 
Figure 5. Quarterly rolling mean similarity scores, organism rarity, disease relevance, and resolutions 

for papers linked to AlphaFold 2 and other frontier developments. 

We separately draw attention to one distinct measure of novelty: the likelihood of research 
involving disease-relevant structures. This metric indicates the direction of research, rather 
than abstract protein structure novelty. It is also a measure that exhibits strong and 
significant effects with a distinct dynamic. First, AlphaFold 2 appears to be associated 
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with a 39% increase in disease related research activity for laboratories, paralleled by 
other frontier structural biology developments. However, AlphaFold 2 is uniquely 
associated with a 137% increase in disease related research for established researchers. 

Figure 6. Association between AlphaFold 2, other frontier developments and PDB submissions plus key 
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher 

statistical significance. Empty cells (no square) mark effects that are statistically insignificant. 

This pattern of results can be interpreted in several ways: 

● The accuracy of protein structure predictions from AlphaFold 2 compared to other 
prediction methods reduces the risk of exploring less characterised areas of the 
protein space and protein structures that may be harder to determine. 

● A significant number of researchers choose to make the trade off between 
investigating more novel proteins and a loss in experimental resolution that also 
characterises these structures. 

● Comparable impacts experienced by individual researchers and laboratories 
building on AlphaFold 2 may be in part due to predictions reducing the complexity 
of the team-based science historically required for protein structure determination. 

● Experienced researchers, who may become laboratory leads in future, are focusing 
more on protein structures implicated in disease related research, suggesting 
potential future trends towards more combined novel protein structure 
determination and more applied research agendas. 

3.3 Academic Output 
One speculation surrounding AI is that it will significantly increase the productivity of 
research, however empirical evidence for this impact is limited. In addition there are 
conflicting opinions about the potential impact of AI on the quality of science. AI might 
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support scientists to focus on more promising areas of scientific discovery, raising overall 
research quality, or lead to a slew of formulaic and incremental publications from 
researchers who are incentivised to treat AI outputs themselves as new knowledge. 

We measure academic output in two ways. First, we attempt to gauge the effects of 
AlphaFold 2 and other frontier developments on researcher publication volumes, to 
investigate aggregate effects on scientific productivity. Second, we investigate the count of 
citations received by those researchers and their papers, as a proxy for research impact. 

Figure 7. Association between AlphaFold 2, other frontier developments and PDB submissions plus key 
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher 

statistical significance. Empty cells (no square) mark effects that are statistically insignificant. 

Figure 7 shows the full results of our regression analysis. For publication volumes, the 
results are modest. Researchers building on AlphaFold 2 gain a 2.5% increase in 
publication output, while a marginally significant effect is detected for laboratories at 5.1%. 
All other frontier developments show positive impacts of a similar magnitude (bar non-AI 
frontier structural biology developments for researchers and other AI frontier 
developments for laboratories). The high level pattern holds when only methodological 
citations are accounted for, with laboratories gaining the highest benefits from AlphaFold 
2, and researchers gaining slightly more from other AI methods and protein prediction 
methods. 

By design, our citation impact analysis suggests that all paper outputs drawing on frontier 
developments gain an average and similar increase in citation counts. For AlphaFold 2, 
this increase is 28.9%. This pattern holds for both citation counts and the field weighted 
citation index (FWCI), which takes into account field- and year-specific citation patterns. 

The impact on citation counts for individual researchers and laboratories are smaller in 
size, but exhibit an interesting pattern. When only raw citation counts are taken into 
account, researchers and laboratories gain a comparable citation count benefit from 
AlphaFold 2 (8% and 10.4% respectively), surpassing the positive but smaller associations 
observed for most other frontier developments. When FWCI is used to account for field 
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differences, a distinct pattern emerges: AlphaFold 2 yields robust positive associations for 
both researchers and laboratories, whereas other AI frontier developments show no 
significant association with citation impact. 

We repeat the analysis to compare methodological and background citations and note 
similar patterns, although there is limited difference between the two types of use. In most 
cases, the associations linked with methodological use of AlphaFold 2 and frontier 
developments are similar to background use. 

There are several ways to interpret the results here, which suggest a range of possible 
dynamics at play: 

● Despite our attempts to account for them, it is not possible to entirely disentangle 
pre-treatment trends and selection effects, meaning that we cannot say with 
certainty whether researchers, who appear more productive and prolific in this 
study, are adopting frontier developments, including AlphaFold 2, or whether those 
tools and techniques are themselves driving the pace and quality of research. 

● Nonetheless, the citation results are somewhat unsurprising. We would expect any 
scientific works building on frontier developments in their field to result in greater 
downstream citation impact, due to their recognition for field advancement. 

● We know that the publications downstream of the source papers in this study are 
spread across a range of fields. We also know that many of the citations for 
AlphaFold and AI frontier are in computer science. The gains in FWCI associated 
with AlphaFold 2 compared to other AI frontier developments could be explained 
by AlphaFold 2 having wider applicability in work outside of its original intended 
application. 

3.4 Applied Research 
While the expectations around the impacts of AI on scientific knowledge generation are 
contested, it is clear that AlphaFold 2 is able to map large numbers of candidates for 
downstream applications in the bioscience and biomedical domains. This use of AI to 
break bottlenecks in search and optimisation problems is a pattern common to research 
efforts on AI in many disciplines. It is therefore important to assess the translational 
impacts of AlphaFold 2. 

We measure the influence of AlphaFold 2 and frontier developments in structural biology 
across three dimensions of applied activity: disease-focused research activity, clinical 
trials, and patenting. This provides insight into the influence of AlphaFold 2 and 
comparable frontier developments in structural biology beyond academic discovery. 

For scale, we present the number of translational outputs associated with AlphaFold 2 
papers in Table 1. 
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 Count 

Article type Adjacent Downstream 

Disease related publication 3,097 76,320 

Clinical publication 239 12,787 

Patent 100 3,800 

Table 1. Counts of adjacent and downstream applied articles linked to AlphaFold 2. 

Disease relevance is measured by the presence of Medical Subject Headings (MeSH) 
C-class terms in publications. This branch of the MeSH taxonomy is titled ‘Diseases’. By 
this definition, we find that 9.4% of papers adjacent to AlphaFold 2 and 14.8% of 
downstream papers are disease related, as seen in Figure 8. This is lower than general 
structural biology work, of which around 24% is disease related, but on average higher 
than other frontier AI developments (10.6% and 12.2% for adjacent and downstream 
papers respectively).  

Figure 8. Monthly distribution of AF2-related publications by MeSH category. 

In our regression analysis, we find that papers building on AlphaFold 2 and other frontier 
AI are no more likely to be disease related than structural biology in general, while works 
that build structural biology and protein structure prediction frontier are positively 
associated with MeSH C terms. These associations are shown in Figure 9. This 
relationship becomes positive for AlphaFold 2 when we observe the work of researchers 
(9.3%) and laboratories (5.0%). 

Clinical articles are identified through their study design and content, covering randomised 
controlled trials, clinical trials, and observational studies that directly involve human 
subjects or clinical specimens. We find that papers citing AlphaFold 2 have a positive 
association with citations from clinical work, with a likelihood almost double that of the 
structural biology baseline papers. Positive effects are also seen for AI and protein 
prediction frontier papers, albeit at just over half this magnitude. However, at the 
researcher and laboratory level, we see no statistically significant association between 
AlphaFold 2, or any other frontier developments, and clinical citations (bar a modest 
positive association for protein prediction frontier developments built on by laboratories). 
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Figure 9. Association between AlphaFold 2, other frontier developments and PDB submissions plus key 
protein structure metrics. Coloured squares show effect magnitudes; darker shades indicate higher 

statistical significance. Empty cells (no square) mark effects that are statistically insignificant. 

For patent citations we measure patent-to-paper as a measure for translational diffusion 
and patent-to-patent citations as a proxy for patent quality. We find a strong positive 
association for the likelihood of papers building on all frontier developments, including 
AlphaFold 2, to be cited by patents compared to the structural biology baseline. For 
AlphaFold 2 and other AI frontier methods, this positive association holds for researchers 
and laboratories. For patent-to-patent quality, we observe that patents building on 
publications linked to AlphaFold 2 are almost twice as likely to be cited by other patents 
than baseline structural biology, with a smaller, but also positive association for other AI 
frontier work. However, no significant impacts are observed for researchers or laboratories 
who produce work linked to any frontier development and are cited in patents. 

Together these results suggest several trends: 

● A substantial proportion of all structural biology research results in translational 
outputs across clinical trials, disease related research and commercial patents. This 
holds true for frontier developments, including AlphaFold 2, of which a few percent 
of publications provide supporting inputs. This is significant as it demonstrates that 
AlphaFold 2 has diffused into application in a timeframe that is comparable with 
other frontier developments that might be more familiar to downstream 
researchers and innovators. 

● While publications which cite frontier research appear to consistently be positively 
associated with translational research outputs than the structural biology baseline, 
this effect does not consistently translate to the researchers and laboratories 
producing that body of work across all measures. This is perhaps due to the small 
numbers or concentrated nature of applied research, meaning that systematic 
effects are not present or hard to detect. 
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4. Conclusions 

4.1 Summary 
Our study has examined the impact of AlphaFold 2 on experimental structural biology, 
academic outputs and translational results, revealing its emerging impacts on the 
acceleration of research and scientific impact across a diversity of fields, as compared to 
other structural biology developments. AlphaFold 2's impact over the time frame covered 
by this investigation is characterised by: 

● A substantial influence on structural biology as characterised by a continued strong 
growth in AlphaFold 2’s diffusion among the field at large. This suggests the 
emergence of a new platform for structural biology research alongside more 
established techniques implicated in other frontier developments. 

● A significant and consistent boost in experimental structure submissions and a 
diversification in the range of proteins explored. AlphaFold 2 seems to be making a 
unique contribution by comparison to other frontier techniques which for example 
are linked to less novel protein structures. Our findings are consistent across 
frontier developments and for both researchers and laboratories. 

● A modest increase in the academic productivity of its adopters accompanied by a 
growth in the citations that this research receives. The effects of counterfactual 
frontier techniques are similar in some cases, but AlphaFold 2’s impact profile tends 
to be slightly stronger, and more consistent than other contemporary AI tools, 
particularly when field weighted citations are accounted for. 

● A varied and nuanced impact on translational outputs. Papers citing AlphaFold 2 
are not linked to an increase in disease-related research, but there is a positive 
association for researchers and laboratories building on AlphaFold 2. For clinical 
article citations this reverses - AlphaFold 2 associated with gains for papers, but 
not for researchers and laboratories. Papers, researchers and laboratories building 
on AlphaFold 2 are all positively associated with higher patent citation rates. 
Similarly mixed results appear for other frontier developments, suggesting the 
occurrence of translational impacts is dictated by underlying mechanisms. 

Our analysis is carried out at a high level, investigating systemic impacts of AlphaFold 2 
and other frontier developments in structural biology. It is not supported by additional 
nuanced analysis and substantial qualitative research that would be required to 
understand the underlying dynamics and drivers that lead to particular results and the 
differences between them. 

4.2 Limitations 
The findings presented in this report should be interpreted in light of several data and 
methodological limitations. 

17 



 

Endogeneity and Causality: Despite using robust matching methods, the study cannot 
fully rule out unobserved factors, such as resources available or strategic priorities, that 
influence researcher adoption decisions. Strict causal links cannot be established in the 
absence of an experimental design. 

Temporal and Metric Bias: Comparing frontier technologies is complicated by varying 
release dates. Older methods have had significantly more time to accrue citations than 
AlphaFold 2. Downstream impacts, for example measured by patent data, likely 
underestimate applied impact by missing proprietary or unpublished applications. 

Overestimation of Usage Intensity: The methodology assumes that past citations imply 
future adoption or influence, which likely overestimates the actual intensity of day-to-day 
usage. This metric should be interpreted as a signal of technological exposure rather than 
a measure of consistent reliance upon a category of frontier development. 

Lack of Interaction Effects: The model treats the adoption of different frontier 
technologies as independent variables, despite the fact that researchers may use multiple 
advanced methods simultaneously. Consequently, the analysis cannot isolate potential 
synergistic benefits or substitution effects between AlphaFold 2 and other tools. 

Data Constraints: Data noise regarding authorship and affiliations in OpenAlex imposes 
constraints on the granularity of the analysis. Additionally, limited citation intent data 
results in a loss of statistical power due to sample attrition, constraining our analysis. 

Aggregate Nature of Findings: The focus on average effects may mask important 
distributional impacts and fails to explain the underlying mechanisms driving the results. 
As a result, while the findings highlight important dynamics, the specific interpretations 
and conclusions remain broadly speculative. 

4.3 Discussion 
This study supports the notion of high performance AI as a valuable research tool, and 
hints at it providing a new method of invention. We conclude this report by discussing the 
implications of our findings through the lens of scientific exploration, research productivity, 
and invention. 

Scientific exploration 

Our work supports the idea of AI as a tool for enhancing scientific search and discovery. 
The consistent association of AlphaFold 2 with more novel protein structures suggests 
that the tool is used to characterise proteins in less chartered parts of the protein universe. 
These findings suggest the capacity of AI to open up additional avenues for research 
within a problem space, and is in line with existing work on the use of AlphaFold 2 (Yu, 
2024). 

We speculate that AlphaFold 2 lowers the cost barrier and reduces the risks associated 
with research portfolio diversification. This is enabled by the tool being free and open to 
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use, and by the release of a large volume of predicted protein structures in the AlphaFold 
Protein Database, with self-assessed accuracy evaluations. The patterns we observe 
align with the notion that predictive AI tools can facilitate efficient resource allocation. By 
screening large knowledge spaces computationally they could allow researchers to direct 
experimental and applied efforts toward high value targets, avoiding diminishing returns 
of further exploring better known structure types (Agrawal, McHale and Oettl, 2024). 

Our findings suggest that AI is a tool that can potentially mitigate the ‘streetlight effect’, in 
which it is much easier for scientists to explore areas where it is possible to build on data 
about existing structures (Tranchero et al., 2022; Tranchero, 2024). AlphaFold 2 serves as 
the solution to an engineering problem that previously restricted our view of the protein 
population. The ability of the tool to map new spaces, and direct research efforts towards 
them, points more toward AI being a tool that can open up new questions. Thus, while this 
type of AI does not generate new scientific knowledge, as an engineering solution it can 
qualitatively shift the directionality of research. 

It is important to note that our findings does not allay another concern that the uptake of 
AI will lead to scientists overly focusing on problems that are suited to AI or that 
overreliance on AI will diminish the ability of science to understand mechanisms that drive 
phenomena observed in the lab (Messeri and Crockett, 2024). While it is possible that 
AI-enhanced exploration may itself open up surprising new research avenues, the policy 
decisions and funders can also help to guard against monocultures at the macro level, by 
encouraging the pursuit of novel, path breaking research that might lean less heavily on AI. 

Research Productivity 

As well as encouraging exploration leading to the experimental discovery of new protein 
structures, AlphaFold 2's ability to provide highly accurate protein structure predictions has 
enabled researchers to produce publications of enhanced quality in marginally higher 
volumes. This is evidenced by a consistent enhancement in citation impact across 
disciplines and complemented by the substantially higher volumes of associated Protein 
Databank structures. From our descriptive analysis we see that it is likely that these 
positive effects also spill over into other fields. At a systemic level, we do not observe a 
factory-like churn of publications linked to AlphaFold 2. The publication rates for 
researchers and laboratories leveraging AlphaFold 2 increase in line with other frontier 
developments. 

These combined aspects of AlphaFold 2's success support the ‘Hassabis hypothesis’, 
which suggests that AI-based predictive models can significantly advance scientific 
discovery when applied to problems with a defined objective, vast search spaces, and 
ample data or simulation capabilities, given the relative ineffectiveness of other modelling 
methods in that domain (Agrawal, McHale and Oettl, 2024). The complex and unsolved 
challenge of protein folding prediction satisfies these criteria, and our analysis provides 
evidence of the impact AlphaFold 2 has had on that problem. 
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Other observed increases in citation impact, such as those in clinical research, indicate 
AlphaFold 2's ability to not only advance fundamental research, but also to assist the 
wider development of impactful, pointing to spillover effects that advance science as a 
whole. 

One nuance within these findings is that the productivity benefits of using AlphaFold 2 are 
typically higher for laboratories than established researchers, but the inverse is true for 
citation impact when measured by FWCI. Indeed, this is broadly true of all frontier 
developments included in the study. This suggests that laboratories are able to leverage 
economies of scale and flexibility in order to adopt new methods and incorporate them 
into larger scientific processes, which is an important aspect in the diffusion of AI methods. 
Other factors that may play a role include the experience contained within labs, access to 
knowledge through larger collaboration networks, and resources and infrastructure, which 
may make it easier to leverage AI methods. Nonetheless, this does not totally discount the 
ability of researchers who are not lab leads to leverage AI in potentially more agile ways, 
and produce research of high impact in their respective fields. 

AlphaFold 2 has made an impact in structural biology research, including experimentation, 
but does not excel in all areas of impact in comparison to the counterfactual frontier 
developments we have chosen. Our weaker and contradictory evidence around 
translational impacts could be linked to lags in the translation of novel research into 
innovations, and the limited timeframe available since AlphaFold 2’s release. Our results 
are indicative of the direction of travel for AI in science, but do not comprehensively cover 
the full breadth of impacts, nor the longer term potential benefits or drawbacks of its wider 
adoption. New improvements to AlphaFold 2 are enhancing its performance and 
addressing its limitations, potentially increasing its impact, and presenting future 
opportunities for study (Abramson et al., 2024). Other recent developments in the ability to 
develop large language models with greatly reduced inputs suggest nonlinear progress in 
AI development may reduce some of the barriers required for researchers to build new AI 
tools and see them proliferate within other fields (DeepSeek-AI et al., 2025). 

AI Integration 

Results in this study demonstrate that AlphaFold 2 is built upon by researchers to produce 
increased levels of experimentally verified protein structures. This finding in particular is 
consistent with the idea that AlphaFold 2 is a complement to experimental and 
domain-specific work rather than a substitute. This adds texture to the “oil and water” 
phenomenon by suggesting that the lack of integration between AI and existing research 
within a discipline is not a fixed property, but rather an attribute of specific AI, the 
problems they seek to solve and the task and collaboration configurations required (Duede 
et al., 2024). 

This result is complemented by the use of AlphaFold 2 across disciplines. This is in part 
driven by its generalisable transformer neural network architecture, which distinguishes it 
from other protein structure prediction innovations in structural biology. Some of our 
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findings point to impacts where other AI innovations have struggled to make inroads, that 
in some cases it matches the impact of frontier non-AI developments in structural biology. 
The fact that this impact also stretches beyond biochemistry suggests that AlphaFold 2 
presents a significant advancement on the state of AI within the field, while also pushing 
the state-of-the-art for AI in general. This highlights the potential compounding effect of 
AI advancements across science if adopted as a general method of invention. 

Finally, we see emerging signals of AlphaFold 2’s influence in more applied research and 
development. The somewhat contradictory results, relatively small numbers of adjacent 
translational outputs, and the fact that other frontier developments prove similarly likely to 
contribute to applied impacts suggests a number of dynamics. The first is that there is an 
obvious lag time between new transformational innovations and effects on applied and 
commercial innovation activities. We speculate that despite being a technology of 
transformative potential, AlphaFold 2 is experiencing this lag in part because the research 
ecosystem will need to undergo certain reconfigurations to realise its full potential. 
Laboratories and the individuals within them will likely need to engage in new specialisms, 
develop new collaboration patterns, and identify ways to manage the end-to-end 
processes that employ new AI tools to create applied knowledge and innovative outputs. 

Supporting Science with AI 

Based on this investigation and our findings, we suggest three priority actions that might 
enhance the impacts of AI in science, based on our findings relating to AlphaFold 2: 

● Ensure that funds to support fundamental scientific discovery are balanced with 
the desire to develop and capitalise on new AI tools. Funders should be aware of 
the benefits and limitations of AI and design calls for proposals to promote distinct 
research, as well as encourage better integration. In this way the science 
ecosystem can efficiently support the translation of newly mapped problem spaces 
into new knowledge. 

● For successful AI prediction tools that are sufficiently accurate and demonstrate 
strong adoption among researchers, early efforts should be made to ensure a 
proportion of AI R&D is focused towards creating infrastructure and open access 
tools required for researchers to take advantage of them. Our findings suggest that 
established researchers can use AI tools to take research fields in new and applied 
directions, which can be further supported by lowering the barrier to entry. 

● Where AI leads to an explosion of the mapped space in a field, new tools for 
knowledge management and exploring that space should be developed. For 
proteins there are structure databases, but linking these with interactive tools that 
link structures and academic knowledge in interactive ways, using natural 
language queries and building on existing research workflows could be powerful. 

We also suggest three additional areas for research that would build on our work here and 
fill important evidence gaps. These are: economic analysis to understand how AI impacts 
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the allocation and efficiency of research spending; qualitative research to more deeply 
understand how scientists are integrating AI into their workflows; and collaboration 
analysis using co-authorship data to understand how team composition and 
multidisciplinary integration are being affected at the ecosystem scale. 
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